0%

题目链接:Luogu P4155 [SCOI2015]国旗计划


T5 - Luogu 4155 [SCOI2015] 国旗计划 题解

第7组

题目大意

选出尽量少的区间完全覆盖一个环,输出每个区间强制选的答案,\(n\leq 2\times10^5,M\leq 10^9\).

题解

  1. 把所有战士从 \([1,m]\) 复制到 \([1,2m]\),对应端点加 \(m\),把 \(n\) 个节点都复制一遍.
  2. 由于区间不包含,则我们可以把所有区间按左端点排序,则右端点也会同时有序增加,此时可以利用双指针 \(O(n)\) 得到每个区间 \(i\) 的范围 \([l_i,r_i]\) 内,之后的区间中左端点 \(\leq r_i\) 的最靠右的区间 \(j\),利用该区间贪心取尽量长的覆盖长度,设为 \(\text{nxt}[i] =j\).
  3. 倍增法:构造数组 \(f[i][j]\) 表示从 \(i\) 开始,利用刚才的 \(\text{nxt}\) 关系向后跳 \(2^j\) 步,所达到的区间编号.
  4. 利用数组 \(f[i][j]\) 倍增快速跳到刚好不能覆盖环长 \(m\) 的最右编号,之后再跳一次即可将环完全覆盖. 记录倍增时跳过的 \(2^k\) 累加为答案,并加上该区间自己.

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 2 * (2e5 + 5);

template <typename _Tp>
void read(_Tp &a, char c = 0) {
for (c = getchar(); !isdigit(c); c = getchar());
for (a = 0; isdigit(c); a = a * 10 + c - '0', c = getchar());
}

int n, m, _n, _m;

class seg {
public:
int l, r, nxt, id;
seg() {}
seg(int _l, int _r, int _id) {
l = _l;
r = _r;
nxt = -1;
id = _id;
}
void print() {
printf("[%d, %d] -> %d\n", l, r, nxt);
}
bool operator < (const seg &o) const {
return l < o.l;
}
~seg() {}
};

seg a[N];

int f[N][20], pz[N];

void print() {
for (int i = 1; i <= n; i++) {
a[i].print();
}
}

#define DEBUG

int main() {
// freopen("t5.in", "r", stdin);
read(n), read(m);
_n = n * 2;
_m = m * 2;
for (int i = 1; i <= n; i++) {
int l, r;
read(l), read(r);
if (r < l) r += m;
a[i] = seg(l, r, i);
}
sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i++) {
a[i + n] = a[i];
a[i + n].l = a[i].l + m;
a[i + n].r = a[i].r + m;
}
int p1 = 1, p2 = 1;
while (p1 <= _n) {
int cr = a[p1].r;
while (a[p2].l <= cr && p2 <= _n) {
p2++;
}
a[p1].nxt = p2 - 1;
f[p1][0] = p2 - 1;
p1++;
}
for (int j = 1; j < 20; j++) {
for (int i = 1; i <= _n; i++) {
f[i][j] = f[f[i][j - 1]][j - 1];
}
}
for (int i = 1; i <= n; i++) {
seg &u = a[i], v = a[i];
int p = i;
int ans = 1;
for (int j = 19; j >= 0; j--) {
int to = f[p][j];
if (to) {
v = a[to];
if (v.r < u.l + m) {
p = to;
ans += 1 << j;
}
}
}
pz[a[i].id] = ans + 1;
}
for (int i = 1; i <= n; i++) {
printf("%d ", pz[i]);
}
puts("");
return 0;
}