HDU 5933 ArcSoft's Office Rearrangement 题解
题目大意
给 \(n\) 个石子堆,要求可以任意把某一堆分成两半,或把两个堆合并,问最少需要多少次操作使石子堆变成每堆相等的 \(k\) 堆。
题解
模拟,我们想象最终状态,每个石子堆都是由相邻的两边的原始石子堆拆分与合并而成,于是我们从左到右模拟这个过程即可,代码实现要注意很多细节(WA了无数次)。
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
| #include <cstdio> #include <cctype> #include <algorithm> #include <cstring> #include <iostream> #include <cassert> #include <cmath> using namespace std; typedef long long ll; template <typename _Tp> void read(_Tp &a, char c = 0, int f = 1) { for(c = getchar(); !isdigit(c); c = getchar()) if(c == '-') f = -1; for(a = 0; isdigit(c); a = a * 10 + c - '0', c = getchar()); a *= f; } template <typename _Tp> void write(_Tp a) { if(a < 0) putchar('-'), a = -a; if(a > 9) write(a / 10); putchar(a % 10 + '0'); }
const int N = 1e5 + 5;
ll n, k; ll a[N];
int main() { int T; read(T); for(int _T = 1; _T <= T; _T++) { read(n), read(k); ll s = 0; for(int i = 1; i <= n; i++) { read(a[i]); s += a[i]; } ll t = -1, ans = - 1; if(s % k == 0) { t = s / k; ans = 0; ll lst = 0; for(int i = 1; i <= n; i++) { if(lst + a[i] > t) { if(lst) ans++; ans++; a[i] -= t - lst; lst = 0; while(a[i] >= t) { a[i] -= t; ans++; } if(a[i] == 0) ans--; lst = a[i]; a[i] = 0; } else if(lst + a[i] == t) { if(lst) ans++; lst = 0; a[i] = 0; } else { if(lst) ans++; lst += a[i]; a[i] = 0; } } } else { ans = -1; } printf("Case #%d: %lld\n", _T, ans); } return 0; }
|