1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
| #include <cstdio> #include <cctype> #include <algorithm> #include <cstring> #include <iostream> #include <cassert> #include <cmath> using namespace std; typedef long long ll; template <typename _Tp> void read(_Tp &a, char c = 0, int f = 1) { for(c = getchar(); !isdigit(c); c = getchar()) if(c == '-') f = -1; for(a = 0; isdigit(c); a = a * 10 + c - '0', c = getchar()); a *= f; } template <typename _Tp> void write(_Tp a) { if(a < 0) putchar('-'), a = -a; if(a > 9) write(a / 10); putchar(a % 10 + '0'); }
const int N = 2e9 + 5; const int M = 1e5 + 5;
ll T, n, m, L, R; ll a[M], b[M];
#define ZERO 0ll
ll f(ll x, ll y) { return (abs(y - x) + 1) * (x + y) / 2; }
ll getMIN(ll x1, ll y1, ll x2, ll y2) { ll dy = abs(y1 - y2); ll dx = abs(x1 - x2); if(dx < dy) return -1; ll p = (y1 - y2 + x1 + x2) / 2; ll py1 = y1 - (p - x1); ll py2 = y2 - (x2 - p); if(py1 == py2) if(py1 < 0) return f(y1, 0) + f(0, y2); else return f(y1, py1) + f(py1, y2) - py1; else if(py1 < 0) return f(y1, 0) + f(0, y2); else return f(y1, py1) + f(py1, y2); }
ll getMAX(ll x1, ll y1, ll x2, ll y2) { ll dy = abs(y1 - y2); ll dx = abs(x1 - x2); if(dx < dy) return -1; ll p = (y2 - y1 + x1 + x2) / 2; ll py1 = y1 + (p - x1); ll py2 = y2 + (x2 - p); if(py1 == py2) return f(y1, py1) + f(py1, y2) - py1; else return f(y1, py1) + f(py1, y2); }
int main() { read(T), read(n), read(m); for(int i = 1; i <= m; i++) { read(a[i]); read(b[i]); } L += f(max(ZERO, b[1] - (a[1] - 1)), b[1]) - b[1]; R += f(b[1], b[1] + (a[1] - 1)) - b[1]; bool _ = 1; for(int i = 1; i <= m - 1; i++) { ll tMIN = getMIN(a[i], b[i], a[i + 1], b[i + 1]); ll tMAX = getMAX(a[i], b[i], a[i + 1], b[i + 1]); if(tMIN == -1 || tMAX == -1) { _ = 0; break; } L += tMIN - b[i + 1]; R += tMAX - b[i + 1]; } if(!_) { puts("No"); return 0; } L += f(max(ZERO, b[m] - (n - a[m])), b[m]); R += f(b[m], b[m] + (n - a[m])); if(L <= T && T <= R) puts("Yes"); else puts("No"); return 0; }
|